Experimentelle Untersuchung, Simulation und Materialmodellierung von edelstahlverstärkten Langfaserthermoplasten
- In Zeiten rasant ansteigender Energiepreise wird die Energieeinsparung durch Gewichtsreduzierung
bewegter Massen, z. B. im Automobilbau, zunehmend wichtiger. In immer mehr Bereichen des
Automobilbaues werden Faser-Kunststoff- Verbunde (FKV) aufgrund ihrer geringen Dichte eingesetzt.
Positive Aspekte einer Faserverstärkung von Kunststoffen sind Verbesserungen der Steifigkeit und
der Festigkeit. Negativ wirkt sich die Faserverstärkung hingegen auf die Bruchdehnung aus. Je nach
eingesetztem FKV kann durch die geringe Bruchdehnung bei einem Crash nur wenig Energie absorbiert
werden und es kommt zum strukturellen Versagen. Wegen der günstigen Material- und
Verarbeitungskosten werden im Auto- mobilbau häufig langglasfaserverstärkte Thermoplaste (LFT)
verwendet. Diese können allerdings aufgrund ihrer suboptimalen Crasheigenschaften in vielen
Bereichen des Fahrzeugbaues nicht eingesetzt werden. Die vorliegende Arbeit befasst sich daher mit
der Verbesserung der Crasheigenschaften von LFT durch eine Verstärkung mit Metalltextilien. Ziel
ist es, den Anwendungsbereich von LFT im Auto- mobilbau zu erweitern. Aufgrund der Erfahrungen in
vorangegangenen Arbeiten liegt der Fokus der vorliegenden Arbeit auf den Eigenschaften eines mit
Edelstahl- schweißgitter (ESG) verstärkten LFT. Das Material wurde mit einer Vielzahl an Versuchen
einer eingehenden mechanischen Charakterisierung unterzogen. Vor der Probenentnahme wurde die
herstellungsbedingte Faserorientierung in Plattenebene untersucht. Dies geschah durch die
Auswertung von Röntgen- und Durchlicht- aufnahmen. Es wurde eine hochgradige Faserausrichtung in
Fließrichtung fest- gestellt. Mit Hilfe der Computertomographie war eine qualitative Untersuchung
der lokalen Faserorientierung möglich. Weiterhin konnte die Beeinflussung der Faser- orientierung
durch die Metalltextilverstärkung beobachtet werden. Aufgrund der Be- deutung der
Interfaceeigenschaften zwischen Stahl und LFT für den ESG-LFT- Verbund wurden die Scher- und
Normalfestigkeit mit Hilfe von Drahtauszug- und Stirnabzugversuchen bestimmt. Die
Interfaceeigenschaften wurden für verschiedene Vorbehandlungsmethoden der metallischen Oberfläche
untersucht. Eine Vorbehand- lung durch Druckluftstrahlen der Oberfläche führte zu den besten
Haftungs- eigenschaften. Als Strahlmittel wurden Korundpartikel eingesetzt. Neben metall-
textilverstärkten LFT-Proben wurden auch unverstärkte LFT-Proben als Referenzuntersucht. Es wurden quasistatische Versuche unter Zug- und Schubbelastung
durchgeführt. Wegen der Crashanwendung wurden die Zugversuche auch unter
kurzzeitdynamischer Belastung durchgeführt. Zusätzlich wurden Durchstoßversuche
durchgeführt, um den Einfluss auf die Energieabsorption beobachten zu können. Um
die Verbesserung der strukturellen Integrität zu demonstrieren, wurden einfache
Demonstratorbauteile unter Zugbelastung getestet. Dabei konnte neben einer
Bestimmung wichtiger Materialparameter eine erhöhte Energieaufnahme und eine
verbesserte strukturelle Integrität nachgewiesen werden. Zur Erweiterung der
experimentellen Erkenntnisse wurde ein parametrisiertes Simulationsmodell auf
Mikroebene entwickelt. Anhand des Mikromodells gelang es, einen detaillierten
Einblick in den Spannungszustand und das Versagensverhalten von ESG-LFT zu
erhalten. Des Weiteren war es damit möglich, den Einfluss verschiedener Geometrieund
Haftungsparameter auf die Verbundeigenschaften zu untersuchen. Die
vorliegenden Erkenntnisse wurden zur Programmierung eines makromechanischen
Simulationsmodells genutzt. Dieses zeigte, trotz der vorgenommenen
Vereinfachungen, bereits gute Übereinstimmungen von Simulation und Experiment
und konnte Hinweise für weiterführende Arbeiten liefern. Das entwickelte makromechanische
Modell kann damit als Basis für die Weiterentwicklung dieses Materialmodells genutzt werden.