Zur Pultrusion von thermoplastischen Halbzeugen: Prozessanalys und Modelllbildung
- Zur kontinuierlichen Herstellung von Faser-Kunstoff-Verbunden in Form von Profilen
hat sich das Pultrusionsverfahren seit langem erfolgreich industriell etabliert. Bis jetzt
wurden fast ausschließlich duroplastische Matrizes verwendet. Aufgrund der
zahlreichen Vorteile wecken thermoplastische Faserverbundwerkstoffe zunehmend
das Interesse der Industrie; der Einsatz und die Fertigung von thermoplastischen
Profilen in hohen Stückzahlen werden jedoch bislang wegen mangelnder
Grundkenntnisse noch nicht realisiert.
In der vorliegenden Arbeit wird der Pultrusionsprozess thermoplastischer
Faserverbundwerkstoffe im Hinblick auf Realisierbarkeit und Optimierung von
Prozessparametern untersucht. Ziel war es bereits vorliegende Erkenntnisse zu
erweitern und bestehende Wissenslücken zu schließen. Als Ausgangsmaterial
wurden verschiedene Garntypen verwendet: ein Garn aus Kohlenstoff- und Polyamid
12-Fasern, ein Mischgarn aus Glas- und Polypropylen-Fasern sowie Polypropylen
pulverimprägnierte Glasfasern (sogenannte Towpregs). Besonderes Augenmerk lag
auf dem ersten Garntyp aus CF/PA12, der diskontinuierliche Fasern enthält. Mit
diesen Materialien wurden unidirektional faserverstärkte, rechteckige und runde
Profile hergestellt. Weiterhin wurde der Einfluss von zwei Hauptprozessparametern,
die Temperatur der Vorheizzone und der Heizdüse und die Abzugsgeschwindigkeit,
sowie von der Länge der Heizdüse auf die Profilqualität analysiert. Die jeweils
verwendeten Garntypen, der sich einsstellende Faservolumengehalt sowie der
Feuchtigkeitseinfluss wurden zusätzlich systematisch untersucht. Weiterhin wurde
die Abzugskraft analysiert.
Die Charakterisierung der Pultrudatqualität erfolgte durch mechanische und
morphologische Prüfungen. Der Imprägnierungsgrad, die Biegeeigenschaften und
die Scherfestigkeit, sowie zweitrangig die Charpy-Schlagzähigkeit und die
Zugeigenschaften wurden hierzu ermittelt und anschließend bewertet. Weiterhin
wurde die Oberflächenqualität mittels Laserprofilometrie untersucht.
Einen entscheidenden Faktor stellte die Abzugsgeschwindigkeit dar. Bis auf die
Oberfläche wurden Verschlechterungen der Imprägnierung und der mechanischen
Eigenschaften mit zunehmender Geschwindigkeit beobachtet.
Weiterhin wurde der Abkühlungsprozess untersucht. Die bei der Pultrusion
vorhandenen Abkühlraten sind sehr hoch und werden von der
Abzugsgeschwindigkeit sowie der Kühldüsentemperatur beeinflusst.Die Erstellung eines Verarbeitungsfensters für das Garn aus CF/PA12 wurde
erfolgreich durch Verwendung einer Qualitätskennzahl durchgeführt.
Des Weiteren wurde die Erstarrung und der Prozess der Kristallisation aus der
Schmelze für das CF/PA12 System näher untersucht. Zur Beschreibung der
isothermen sowie nicht-isothermen Kristallisationskinetik wurden verschiedene
Methoden angewandt. In diesem Zusammenhang lieferten das Modell von Chuah
zufriedenstellende Ergebnisse.
Weiterhin erfolgte die Modellierung der Wärmeübertragung zur Vorhersage der
Temperatur im Material während der Pultrusion mit der Finiten Elemente Methode.
Aufbauend hierauf können im Versuchsvorfeld die am besten geeigneten
Werkzeugtemperatur-/Abzugsgeschwindigkeitskombinationen eingestellt werden.