- Background: Aneuploidy, or abnormal chromosome numbers, severely alters cell physiology and is widespread in
cancers and other pathologies. Using model cell lines engineered to carry one or more extra chromosomes, it has
been demonstrated that aneuploidy per se impairs proliferation, leads to proteotoxic as well as replication stress
and triggers conserved transcriptome and proteome changes.
Results: In this study, we analysed for the first time miRNAs and demonstrate that their expression is altered in
response to chromosome gain. The miRNA deregulation is independent of the identity of the extra chromosome
and specific to individual cell lines. By cross-omics analysis we demonstrate that although the deregulated miRNAs
differ among individual aneuploid cell lines, their known targets are predominantly associated with cell development,
growth and proliferation, pathways known to be inhibited in response to chromosome gain. Indeed, we show that up
to 72% of these targets are downregulated and the associated miRNAs are overexpressed in aneuploid cells, suggesting
that the miRNA changes contribute to the global transcription changes triggered by aneuploidy. We identified
hsa-miR-10a-5p to be overexpressed in majority of aneuploid cells. Hsa-miR-10a-5p enhances translation of a
subset of mRNAs that contain so called 5’TOP motif and we show that its upregulation in aneuploids provides
resistance to starvation-induced shut down of ribosomal protein translation.
Conclusions: Our work suggests that the changes of the microRNAome contribute on one hand to the adverse
effects of aneuploidy on cell physiology, and on the other hand to the adaptation to aneuploidy by supporting
translation under adverse conditions.
Keywords: Aneuploidy, Cancer, miRNA, miR-10a-5p, Trisomy