Photochemische Modifizierung von Gummipartíkeln - ein Beitrag zur stofflichen Wiederverwertung von Altgummi
- Die Einmischung von Altgummipartikeln aus zerkleinerten Altreifen in Thermoplast-,
Elastomer- und Duromer-Matrizes im Sinne einer stofflichen Wiederverwertung führt
zu erheblichen Eigenschaftsverschlechterungen der altgummipartikelmodifizierten
Polymerblends. Vor diesem Hintergrund gewinnt die Modifizierung der Altgummipartikel
für eine Verbesserung der Verträglichkeit mit den Matrixmaterialien
zunehmend an Bedeutung.
Zur Modifizierung der Altgummipartikel wurden photochemische Pfropfungsreaktionen
mit Glycidylmethacrylat (GMA) und Methacrylsäure (MAA) nach einem
radikalischen Polymerisationsmechanismus durchgeführt.
Um Altgummipartikel erfolgreich chemisch modifizieren zu können, ist ein fundiertes
Wissen über die entscheidenden Parameter des Pfropfungsprozesses erforderlich.
So haben beispielsweise die Art und Konzentration der Pfropfungschemikalien wie
Monomer und Photoinitiator, die Art des Spülgases, die Temperatur sowie die
Bestrahlungszeit einen entscheidenden Einfluss auf das Pfropfungsergebnis. Der
Nachweis der Oberflächenmodifizierung erfolgte mit Hilfe chemischer Analytikmethoden
sowie mittels Kontaktwinkelmessungen.
Ein weiterer Schwerpunkt dieser Arbeit lag auf der Herstellung von altgummipartikelmodifizierten
Thermoplast-, Duromer- und Elastomer-Blends. Polyamid-6
(PA-6) und Polybutylenterephthalat (PBT) wurden als thermoplastische Matrixmaterialien
ausgewählt. Als Vertreter der Duromere wurde beispielhaft ein
Vinylester-Urethan-Hybridharz (VEUH) angewendet und als elastomeres
Matrixmaterial kam ein Polyurethan-Gießelastomer (PUR) zur Anwendung.
Bei höheren Gummipartikel-Konzentrationen zeigte sich, dass durch die Pfropfung
die Verträglichkeit zwischen Gummipartikeln und den o. g. Matrixmaterialien verbessert
wurde. Die Modifizierung von PA-6 und VEUH mit feinverteilten
Gummipartikeln bewirkte bei geringfügigen Einbußen an Festigkeit und Steifigkeit
deutliche Zähigkeitssteigerungen. Dieser Effekt war bei den GMA modifizierten
Gummipartikeln stärker ausgeprägt.
Bei der Anwendung von 10 Gew.% MAA gepfropften Gummipartikeln in PURElastomeren
konnten sehr gute mechanische Kennwerte erzielt werden. Damit
stellen altgummipartikelmodifizierte PUR-Blends eine interessante Recyclingoption für Altreifen und Altgummiabfälle dar.
- Recycling of worn out tyres has obtained a great interest. Great efforts are therefore
devoted to find new fields of application of ground tyre rubber (GTR).
A method that has the potential of utilising large numbers of discarded tyres involves
grinding the rubber into small particles and then reusing it as a filler in thermoplastic,
thermoset and rubber compounds. However, the incorporation of GTR particles into
polymer matrices significantly impairs the properties of the resulting composites. This
is because of the poor matrix-filler adhesion and the lack of reactive sites on the
GTR particle surface.
There are several ways to „upcycle“ GTR. This thesis aimed at developing a suitable
surface treatment for GTR particles by chemical modification in order to improve their
compatibility with polar matrix materials.
Rubbers were treated by ultraviolet light (UV) initiated grafting of glycidyl
methacrylate (GMA) and methacrylic acid (MAA). The viability of this grafting was
first shown at unvulcanized and vulcanized styrene-butadiene rubber (SBR). Note
that SBR is the major component in tyre mixtures. Major parameters of the grafting
reaction affecting the grafting degree, the amount of undesired by-products and the
crosslinking degree were studied and optimized for SBR.
Attenuated total reflectance Fourier-transform infrared spectroscopy (FTIR-ATR),
X-ray photoelectron spectroscopy (XPS) and elemental analysis have been used for
chemical characterization of the treated rubbers.
In order to achieve a high grafting degree and to avoid undesirable secondary reactions the reaction temperature and the irradiation time have to be adjusted as
low as possible.
The best grafting performance was reached by using a photoinitiator mixture
containing 80 % 2-Hydroxy-2-methyl-1-phenyl-propan-1-one and 20 % 1-Hydroxycyclohexyl-
phenyl-ketone in nitrogen atmosphere. The increase of the photoinitiator
concentration did not result in an enhanced grafting degree.
The rubber treatment is particularly efficient when the simultaneous grafting method
is applied. Using the simultaneous grafting method, the grafting substrate is
presoaked in the grafting solution and afterwards grafted in one step under the
influence of UV radiation. A photo-initiator concentration of 0,2 mol/lsolvent and a monomer concentration of 6 mol/lsolvent were determined as optimal concentrations
for the presoaking solution.
Carbon black content in SBR vulcanizates was found to be one of the major factors
controlling the monomer grafting. The degree of monomer graft onto SBR decreased
with increasing carbon black content. However, the degree of grafting of the filled
SBR was slighthly higher by replacing carbon black with silica in comparison with
thus of the unfilled SBR.
According to these results, the presented grafting procedure can not be universally
used for unvulcanized and vulcanized rubbers and GTR particles containing carbon
black over 10 phr (parts per hundred rubber).
The optimized grafting procedure was transfered successfully to silica filled GTR
particles and to GTR particles with low carbon black contents, i.e. less than 10 phr.
XPS analysis of GMA treated GTR particles showed that epoxy and carbonyl groups
have been introduced on GTR surface after grafting. In case of MAA treatment new
carboxyl groups have been found.
By combining FTIR-ATR and elemental analysis a normalized calibration function
could be deduced to determine the absolute grafting degree of unvulcanized SBR
rubbers. The FTIR-ATR results of GTR sheets were calibrated by considering the
XPS results.
A further task of this work was to apply the treated GTR particles in selected
thermoplastics, thermosets and elastomers and thus to develop new compounds
with improved performance, e. g. increased impact strength.
Untreated and treated GTR particles were melt blended with polyamide-6 (PA-6) and poly(butylene terephthalate) (PBT) in a twin-screw extruder. The blends were
characterized according to their mechanical, viscoelastic and morphological
properties.
It was found that the treated GTR particles exhibit at 20 wt.% much better
compatibility with PA-6 and PBT than the untreated GTR ones. This was evidenced
by scanning electron microscopy and dynamic mechanical thermal analysis (DMTA).
Moreover, the modification of PA-6 with finely dispersed GTR particles resulted in
clear improvement of the toughness with slight loss of the stiffness and strength.
Irrespective of the surface treatment of the GTR particles, their incorporation in PBT matrices did not result in any improvement of the mechanical performance of the
blends. This is a clear indication that the effect of mean particle size in
thermoplastics is more important than that of surface treatment. The effectiveness of
treated GTR particles in a size range of 100 to 400 μm is limited for toughening of
PA-6, while these particles are not suitable in PBT matrices.
The GTR particles could well be incorporated in vinylester-urethane hybrid resins
(VEUH). Therefore, they were utilized for replacing the commercial expensive
functionalized liquid rubbers by this cost-efficient recycling product. The addition of 5
and 10 wt.% of treated GTR particles to VEUH systems led to an improvement in
toughness, while the stiffness was slightly reduced. It was also possible to use
untreated GTR particles for toughening of VEUH. However, the toughness
improvements were lower in this case. It is important to note that the material
properties of the GTR modified VEUH resins are inferior to the commercial rubbermodified
VEUH resins. Considering the cost of the commercial rubber modifiers,
however, the application of waste rubber in fine fractions is economically beneficial.
A very promising application for surface treated GTR is given by its incorporation in
hot cast polyurethane elastomers (PUR). PUR blends with GTR particles showed
outstanding mechanical performance. The GTR particles could be mixed quite well
with the polyol component of PUR up to 15 wt.%. The shore A-hardness as well as
the modulus at 100 and 300 % elongation are increased by the incorporation of 10
and 15 wt.% MAA treated GTR particles into an unfilled PUR matrix in relation to that
of unfilled PUR matrix. PUR compounds with 10 wt.% MAA treated GTR particles show the best mechanical performance. For example PUR with 10 wt.% MAA treated
GTR particles has higher stiffness over the entire temperature range and an
improved damping behavior in comparison to that of unfilled PUR matrix based on
DMTA results.
As a consequence the production of such PUR materials using discarded GTR
particles may be a valuable recycling option for post-consumer tyres.