Contract-Based Safety Certification for the Dynamic Adaptation Behavior of Networked Embedded Systems
- Under the notion of Cyber-Physical Systems an increasingly important research area has
evolved with the aim of improving the connectivity and interoperability of previously
separate system functions. Today, the advanced networking and processing capabilities
of embedded systems make it possible to establish strongly distributed, heterogeneous
systems of systems. In such configurations, the system boundary does not necessarily
end with the hardware, but can also take into account the wider context such as people
and environmental factors. In addition to being open and adaptive to other networked
systems at integration time, such systems need to be able to adapt themselves in accordance
with dynamic changes in their application environments. Considering that many
of the potential application domains are inherently safety-critical, it has to be ensured
that the necessary modifications in the individual system behavior are safe. However,
currently available state-of-the-practice and state-of-the-art approaches for safety assurance
and certification are not applicable to this context.
To provide a feasible solution approach, this thesis introduces a framework that allows
“just-in-time” safety certification for the dynamic adaptation behavior of networked
systems. Dynamic safety contracts (DSCs) are presented as the core solution concept
for monitoring and synthesis of decentralized safety knowledge. Ultimately, this opens
up a path towards standardized service provision concepts as a set of safety-related runtime
evidences. DSCs enable the modular specification of relevant safety features in
networked applications as a series of formalized demand-guarantee dependencies. The
specified safety features can be hierarchically integrated and linked to an interpretation
level for accessing the scope of possible safe behavioral adaptations. In this way, the networked
adaptation behavior can be conditionally certified with respect to the fulfilled
DSC safety features during operation. As long as the continuous evaluation process
provides safe adaptation behavior for a networked application context, safety can be
guaranteed for a networked system mode at runtime. Significant safety-related changes
in the application context, however, can lead to situations in which no safe adaptation
behavior is available for the current system state. In such cases, the remaining DSC
guarantees can be utilized to determine optimal degradation concepts for the dynamic
applications.
For the operationalization of the DSCs approach, suitable specification elements and
mechanisms have been defined. Based on a dedicated GUI-engineering framework it is
shown how DSCs can be systematically developed and transformed into appropriate runtime
representations. Furthermore, a safety engineering backbone is outlined to support
the DSC modeling process in concrete application scenarios. The conducted validation
activities show the feasibility and adequacy of the proposed DSCs approach. In parallel,
limitations and areas of future improvement are pointed out.