Know What You See - Visual Analytics enabling Machine Learning Performance Evaluation
- This work presents a visual analytics-driven workflow for an interpretable and understandable machine learning model. The model is driven by a reverse
engineering task in automotive assembly processes. The model aims
to predict the assembly parameters leading to the given displacement field
on the geometries surface. The derived model can work on both measurement
and simulation data. The proposed approach is driven by the scientific
goals from visual analytics and interpretable artificial intelligence alike. First, a concept for systematic uncertainty monitoring, an object-oriented, virtual reference scheme (OOVRS), is developed. Afterward, the prediction task is solved via a regressive machine learning model using adversarial neural networks.
A profound model parameter study is conducted and assisted with an interactive visual analytics pipeline. Further, the effects of the learned
variance in displacement fields are analyzed in detail. Therefore a visual analytics pipeline is developed, resulting in a sensitivity benchmarking tool. This allows the testing of various segmentation approaches to lower the machine learning input dimensions. The effects of the assembly parameters are
investigated in domain space to find a suitable segmentation of the training
data set’s geometry. Therefore, a sensitivity matrix visualization is developed. Further, it is shown how this concept could directly compare results
from various segmentation methods, e.g., topological segmentation, concerning the assembly parameters and their impact on the displacement field variance. The resulting databases are still of substantial size for complex simulations with large and high-dimensional parameter spaces. Finally, the applicability of video compression techniques towards compressing visualization image databases is studied.