Comparative Uncertainty Visualization for High-Level Analysis of Scalar- and Vector-Valued Ensembles

  • With this thesis, I contribute to the research field of uncertainty visualization, considering parameter dependencies in multi valued fields and the uncertainty of automated data analysis. Like uncertainty visualization in general, both of these fields are becoming more and more important due to increasing computational power, growing importance and availability of complex models and collected data, and progress in artificial intelligence. I contribute in the following application areas: Uncertain Topology of Scalar Field Ensembles. The generalization of topology-based visualizations to multi valued data involves many challenges. An example is the comparative visualization of multiple contour trees, complicated by the random nature of prevalent contour tree layout algorithms. I present a novel approach for the comparative visualization of contour trees - the Fuzzy Contour Tree. Uncertain Topological Features in Time-Dependent Scalar Fields. Tracking features in time-dependent scalar fields is an active field of research, where most approaches rely on the comparison of consecutive time steps. I created a more holistic visualization for time-varying scalar field topology by adapting Fuzzy Contour Trees to the time-dependent setting. Uncertain Trajectories in Vector Field Ensembles. Visitation maps are an intuitive and well-known visualization of uncertain trajectories in vector field ensembles. For large ensembles, visitation maps are not applicable, or only with extensive time requirements. I developed Visitation Graphs, a new representation and data reduction method for vector field ensembles that can be calculated in situ and is an optimal basis for the efficient generation of visitation maps. This is accomplished by bringing forward calculation times to the pre-processing. Visually Supported Anomaly Detection in Cyber Security. Numerous cyber attacks and the increasing complexity of networks and their protection necessitate the application of automated data analysis in cyber security. Due to uncertainty in automated anomaly detection, the results need to be communicated to analysts to ensure appropriate reactions. I introduce a visualization system combining device readings and anomaly detection results: the Security in Process System. To further support analysts I developed an application agnostic framework that supports the integration of knowledge assistance and applied it to the Security in Process System. I present this Knowledge Rocks Framework, its application and the results of evaluations for both, the original and the knowledge assisted Security in Process System. For all presented systems, I provide implementation details, illustrations and applications.
Author:Anna-Pia LohfinkORCiD
Advisor:Christoph GarthORCiD
Document Type:Doctoral Thesis
Language of publication:English
Publication Date:2022/06/28
Year of Publication:2022
Publishing Institute:Technische Universität Kaiserslautern
Granting Institute:Technische Universität Kaiserslautern
Acceptance Date of the Thesis:2022/05/06
Date of the Publication (Server):2022/06/29
Tag:Uncertain Data; Visualization
GND-Keyword:Visualisierung; Unsicherheit
Number of page:VIII, 199
Faculties / Organisational entities:Kaiserslautern - Fachbereich Informatik
CCS-Classification (computer science):I. Computing Methodologies / I.3 COMPUTER GRAPHICS
DDC-Cassification:0 Allgemeines, Informatik, Informationswissenschaft / 004 Informatik
Licence (German):Creative Commons 4.0 - Namensnennung, nicht kommerziell, keine Bearbeitung (CC BY-NC-ND 4.0)