The Beneficial Effects of Cyanobacterial Co-Culture on Plant Growth

  • Cyanobacteria are ubiquitous phototrophic prokaryotes that find a wide range of applications in industry due to their broad product spectrum. In this context, the application of cyanobacteria as biofertilizers and thus as an alternative to artificial fertilizers has emerged in recent decades. The benefit is mostly based on the ability of cyanobacteria to fix elemental nitrogen and make it available to the plants in a usable form. However, the positive effects of co- cultivating plants with cyanobacteria are not limited to the provision of nitrogen. Cyanobacteria produce numerous secondary metabolites that can be useful for plants, for example, they can have growth-promoting effects or increase resistance to plant diseases. The effects of biotic and abiotic stress can as well be reduced by many secondary metabolites. Furthermore, the biofilms formed by the cyanobacteria can lead to improved soil conditions, such as increased water retention capacity. To exchange the substances mentioned, cyanobacteria form symbioses with plants, whereby the strength of the symbiosis depends on both partners, and not every plant can form symbiosis with every cyanobacterium. Not only the plants in symbiosis benefit from the cyanobacteria, but also vice versa. This review summarizes the beneficial effects of cyanobacterial co-cultivation on plants, highlighting the substances exchanged and the strength of cyanobacterial symbioses with plants. A detailed explanation of the mechanism of nitrogen fixation in cyanobacterial heterocysts is given. Finally, a summary of possible applications of co-cultivation in the (agrar-)industry is given.

Download full text files

Export metadata

Metadaten
Author:Jonas KollmenORCiD, Dorina StriethORCiD
URN:urn:nbn:de:hbz:386-kluedo-68964
Parent Title (English):Life
Publisher:MDPI
Document Type:Article
Language of publication:English
Date of Publication (online):2022/01/31
Year of first Publication:2022
Publishing Institution:Technische Universität Kaiserslautern
Date of the Publication (Server):2022/07/25
Tag:biofertilizer; co-culture; cyanobacteria; nitrogen fixation; plants; secondary metabolites
Issue:2022, 12(2), 223
Page Number:21
Source:https://doi.org/10.3390/life12020223
Faculties / Organisational entities:Kaiserslautern - Fachbereich Maschinenbau und Verfahrenstechnik
DDC-Cassification:6 Technik, Medizin, angewandte Wissenschaften / 624 Ingenieurbau und Umwelttechnik
Collections:Open-Access-Publikationsfonds
Licence (German):Zweitveröffentlichung