Model Based System Analysis Techniques to Determine Propagation Paths of Functional Insufficiencies in Software Intensive Systems

  • Highly Automated Driving (HAD) vehicles represent complex and safety critical systems. They are deployed in an open context i.e., an intricate environment which undergoes continual changes. The complexity of these systems and insufficiencies in sensing and understanding the open context may result in unsafe and uncertain behaviour. The safety critical nature of the HAD vehicles requires modelling of root causes for unsafe behaviour and their mitigation to argue sufficient reduction of residual risk. Standardization activities such as ISO 21448 provide guidelines on the Safety Of The Intended Functionality (SOTIF) and focus on the analysis of performance limitations under the influence of triggering conditions that can lead to hazardous behaviour. SOTIF references traditional safety analyses methods e.g., Failure Mode and Effect Analysis (FMEA) and Fault Tree Analysis (FTA) to perform safety analysis. These analyses methods are based on certain assumptions e.g., single point failure in FMEA and independence of basic events in FTA. Moreover, these analyses are generally based on expert knowledge i.e., data-based models or hybrid approaches (expert and data) are seldom practised. The resulting safety model is fixed i.e., it is generally seen as a one-time artefact. Open context environment may contain triggering conditions which may not be evident to the expert. Open context also evolves over time and new phenomena may emerge. This thesis explores the applicability of the traditional safety analyses techniques to provide safety models for HAD vehicles operating in the open context, under the light of modelling assumptions taken by traditional safety analyses techniques. Moreover, incorporating uncertainties into safety analyses models is also explored. An explicit distinction between the inherent uncertainty of a probabilistic event (aleatory) and uncertainty due to lack of knowledge (epistemic) is made to formalize models to perform SOTIF analysis. A further distinction is made for conditions of complete ignorance and termed as ontological uncertainty. The distinction is important as for HAD vehicles operating in open context the ontological uncertainty can never be completely disregarded. This thesis proposes a novel framework of SOTIF to model, estimate and dis cover triggering conditions relevant to performance limitations. The framework provides the ability to model uncertainties while also providing a hybrid approach i.e., supporting inclusion of expert knowledge as well as data driven engineering processes. Two representative algorithms are provided to support the framework. Bayesian Network (BN) and p-value hypothesis testing are utilised in this regard. The framework is implemented on a real-world case study in which LIDARs based perception systems are used as vehicle detection system.

Download full text files

Export metadata

Metadaten
Author:Ahmad Adee
URN:urn:nbn:de:hbz:386-kluedo-74620
DOI:https://doi.org/10.26204/KLUEDO/7462
Advisor:Peter Liggesmeyer
Document Type:Doctoral Thesis
Cumulative document:No
Language of publication:English
Date of Publication (online):2023/10/13
Year of first Publication:2023
Publishing Institution:Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Granting Institution:Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Acceptance Date of the Thesis:2023/09/29
Date of the Publication (Server):2023/10/17
Page Number:XXVII, 135
Faculties / Organisational entities:Kaiserslautern - Fachbereich Informatik
DDC-Cassification:0 Allgemeines, Informatik, Informationswissenschaft / 004 Informatik
Licence (German):Creative Commons 4.0 - Namensnennung (CC BY 4.0)