Development and numerical study of efficient solvers for single-phase steady flows in tight porous media

  • Single-phase flows are attracting significant attention in Digital Rock Physics (DRP), primarily for the computation of permeability of rock samples. Despite the active development of algorithms and software for DRP, pore-scale simulations for tight reservoirs — typically characterized by low multiscale porosity and low permeability — remain challenging. The term "multiscale porosity" means that, despite the high imaging resolution, unresolved porosity regions may appear in the image in addition to pure fluid regions. Due to the enormous complexity of pore space geometries, physical processes occurring at different scales, large variations in coefficients, and the extensive size of computational domains, existing numerical algorithms cannot always provide satisfactory results. Even without unresolved porosity, conventional Stokes solvers designed for computing permeability at higher porosities, in certain cases, tend to stagnate for images of tight rocks. If the Stokes equations are properly discretized, it is known that the Schur complement matrix is spectrally equivalent to the identity matrix. Moreover, in the case of simple geometries, it is often observed that most of its eigenvalues are equal to one. These facts form the basis for the famous Uzawa algorithm. However, in complex geometries, the Schur complement matrix can become severely ill-conditioned, having a significant portion of non-unit eigenvalues. This makes the established Uzawa preconditioner inefficient. To explain this behavior, we perform spectral analysis of the Pressure Schur Complement formulation for the staggered finite-difference discretization of the Stokes equations. Firstly, we conjecture that the no-slip boundary conditions are the reason for non-unit eigenvalues of the Schur complement matrix. Secondly, we demonstrate that its condition number increases with increasing the surface-to-volume ratio of the flow domain. As an alternative to the Uzawa preconditioner, we propose using the diffusive SIMPLE preconditioner for geometries with a large surface-to-volume ratio. We show that the latter is much more efficient and robust for such geometries. Furthermore, we show that the usage of the SIMPLE preconditioner leads to more accurate practical computation of the permeability of tight porous media. As a central part of the work, a reliable workflow has been developed which includes robust and efficient Stokes-Brinkman and Darcy solvers tailored for low-porosity multiclass samples and is accompanied by a sample classification tool. Extensive studies have been conducted to validate and assess the performance of the workflow. The simulation results illustrate the high accuracy and robustness of the developed flow solvers. Their superior efficiency in computing permeability of tight rocks is demonstrated in comparison with the state-of-the-art commercial solver for DRP. Additionally, the Navier-Stokes solver for binary images from tight sandstones is discussed.

Download full text files

Export metadata

Metadaten
Author:Vladislav Pimanov
URN:urn:nbn:de:hbz:386-kluedo-75734
DOI:https://doi.org/10.26204/KLUEDO/7573
Advisor:Oleg Iliev
Document Type:Doctoral Thesis
Cumulative document:No
Language of publication:English
Date of Publication (online):2023/12/07
Year of first Publication:2023
Publishing Institution:Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Granting Institution:Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Acceptance Date of the Thesis:2023/11/29
Date of the Publication (Server):2023/12/08
Page Number:XIII, 91
Faculties / Organisational entities:Kaiserslautern - Fachbereich Mathematik
CCS-Classification (computer science):G. Mathematics of Computing
DDC-Cassification:5 Naturwissenschaften und Mathematik / 510 Mathematik
MSC-Classification (mathematics):76-XX FLUID MECHANICS (For general continuum mechanics, see 74Axx, or other parts of 74-XX)
Licence (German):Creative Commons 4.0 - Namensnennung (CC BY 4.0)