Analysis of machining-induced residual stresses of milled aluminum workpieces, their repeatability, and their resulting distortion
- Machining-induced residual stresses (MIRS) are a main driver for distortion of thin-walled monolithic aluminum workpieces. Before one can develop compensation techniques to minimize distortion, the effect of machining on the MIRS has to be fully understood. This means that not only an investigation of the effect of different process parameters on the MIRS is important. In addition, the repeatability of the MIRS resulting from the same machining condition has to be considered. In past research, statistical confidence of MIRS of machined samples was not focused on. In this paper, the repeatability of the MIRS for different machining modes, consisting of a variation in feed per tooth and cutting speed, is investigated. Multiple hole-drilling measurements within one sample and on different samples, machined with the same parameter set, were part of the investigations. Besides, the effect of two different clamping strategies on the MIRS was investigated. The results show that an overall repeatability for MIRS is given for stable machining (between 16 and 34% repeatability standard deviation of maximum normal MIRS), whereas instable machining, detected by vibrations in the force signal, has worse repeatability (54%) independent of the used clamping strategy. Further experiments, where a 1-mm-thick wafer was removed at the milled surface, show the connection between MIRS and their distortion. A numerical stress analysis reveals that the measured stress data is consistent with machining-induced distortion across and within different machining modes. It was found that more and/or deeper MIRS cause more distortion.
Author: | Daniel Weber, Benjamin Kirsch, Christopher R. Chighizola, Christopher R. D'Elia, Barbara S. Linke, Michael R. Hill, Jan C. Aurich |
---|---|
URN: | urn:nbn:de:hbz:386-kluedo-78134 |
DOI: | https://doi.org/10.1007/s00170-021-07171-7 |
ISSN: | 1433-3015 |
Parent Title (English): | The International Journal of Advanced Manufacturing Technology |
Publisher: | Springer Nature - Springer |
Document Type: | Article |
Language of publication: | English |
Date of Publication (online): | 2024/03/15 |
Year of first Publication: | 2021 |
Publishing Institution: | Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau |
Date of the Publication (Server): | 2024/03/15 |
Issue: | 115 |
Page Number: | 22 |
First Page: | 1089 |
Last Page: | 1110 |
Source: | https://link.springer.com/article/10.1007/s00170-021-07171-7 |
Faculties / Organisational entities: | Kaiserslautern - Fachbereich Maschinenbau und Verfahrenstechnik |
DDC-Cassification: | 6 Technik, Medizin, angewandte Wissenschaften / 620 Ingenieurwissenschaften und Maschinenbau |
Collections: | Open-Access-Publikationsfonds |
Licence (German): | Zweitveröffentlichung |