Energy supply scheduling in manufacturing systems using Quantum Annealing

  • Optimizing a manufacturing company's in-house energy demand amidst fluctuating electricity prices and uncertainties in renewable energy supply as well as volatile manufacturing planning situations is a challenging task. To tackle this issue, a novel approach is developed for scheduling the energy supply in manufacturing systems with the objective of reducing energy costs. The approach employs Quantum Annealing to determine the optimal mix of in-house generation, purchased electricity, and energy storage. The effectiveness and scalability of the approach are demonstrated through the validation using two simplified use cases, showcasing its potential in solving complex energy supply optimization problems.

Download full text files

Export metadata

Metadaten
Author:Philipp SchwormORCiD
URN:urn:nbn:de:hbz:386-kluedo-78536
DOI:https://doi.org/10.1016/j.mfglet.2023.09.005
ISSN:2213-8463
Parent Title (English):Manufacturing Letters
Publisher:Elsevier
Document Type:Article
Language of publication:English
Date of Publication (online):2023/09/22
Year of first Publication:2023
Publishing Institution:Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Date of the Publication (Server):2024/03/21
Page Number:5
First Page:47
Last Page:51
Source:https://www.sciencedirect.com/science/article/pii/S2213846323002146?via%3Dihub
Faculties / Organisational entities:Kaiserslautern - Fachbereich Maschinenbau und Verfahrenstechnik
DDC-Cassification:6 Technik, Medizin, angewandte Wissenschaften / 620 Ingenieurwissenschaften und Maschinenbau
Collections:Open-Access-Publikationsfonds
Licence (German):Creative Commons 4.0 - Namensnennung (CC BY 4.0)