A Poisson algebra on the Hida Test functions and a quantization using the Cuntz algebra

  • In this note, we define one more way of quantization of classical systems. The quantization we consider is an analogue of classical Jordan–Schwinger map which has been known and used for a long time by physicists. The difference, compared to Jordan–Schwinger map, is that we use generators of Cuntz algebra O∞ (i.e. countable family of mutually orthogonal partial isometries of separable Hilbert space) as a “building blocks” instead of creation–annihilation operators. The resulting scheme satisfies properties similar to Van Hove prequantization, i.e. exact conservation of Lie brackets and linearity.

Download full text files

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Wolfgang BockORCiD, Vyacheslav Futorny, Mikhail Neklyudov
URN:urn:nbn:de:hbz:386-kluedo-78644
DOI:https://doi.org/10.1007/s11005-022-01507-4
ISSN:1573-0530
Parent Title (English):Letters in Mathematical Physics
Publisher:Springer Nature - Springer
Document Type:Article
Language of publication:English
Date of Publication (online):2024/03/22
Year of first Publication:2022
Publishing Institution:Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Date of the Publication (Server):2024/03/22
Issue:112
Article Number:24
Page Number:11
Source:https://link.springer.com/article/10.1007/s11005-022-01507-4
Faculties / Organisational entities:Kaiserslautern - Fachbereich Mathematik
DDC-Cassification:5 Naturwissenschaften und Mathematik / 510 Mathematik
Collections:Open-Access-Publikationsfonds
Licence (German):Zweitveröffentlichung