Covering edges in networks

  • In this paper we consider the covering problem on a networkG=(V,E)withedgedemands. The task is to cover a subsetJ⊆Eof the edges with a minimum numberof facilities within a predefined coverage radius. We focus on both the nodal andthe absolute version of this problem. In the latter, facilities may be placed every-where in the network. While there already exist polynomial time algorithms to solvethe problem on trees, we establish a finite dominating set (i.e., a finite subset ofpoints provably containing an optimal solution) for the absolute version in generalgraphs. Complexity and approximability results are given and a greedy strategy isproved to be a (1+ln(|J|))-approximate algorithm. Finally, the different approachesare compared in a computational study.

Download full text files

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Nicolas FröhlichORCiD, Andrea Maier, Horst W. Hamacher
URN:urn:nbn:de:hbz:386-kluedo-79631
DOI:https://doi.org/10.1002/net.21924
ISSN:1097-0037
Parent Title (English):Networks
Publisher:Wiley
Document Type:Article
Language of publication:English
Date of Publication (online):2024/04/08
Year of first Publication:2019
Publishing Institution:Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Date of the Publication (Server):2024/04/08
Issue:75/3
Page Number:13
First Page:278
Last Page:290
Source:https://onlinelibrary.wiley.com/doi/10.1002/net.21924
Faculties / Organisational entities:Kaiserslautern - Fachbereich Mathematik
DDC-Cassification:5 Naturwissenschaften und Mathematik / 510 Mathematik
Collections:Open-Access-Publikationsfonds
Licence (German):Zweitveröffentlichung