Fast Robust Rigid and Non-Rigid Registration for Globally Consistent 3D Scene and Shape Reconstruction

  • This doctoral dissertation is comprised of nine published articles covering different methods for ‘Fast, Robust Rigid and Non-Rigid Registration for Globally Consistent 3D Scene and Shape Reconstruction’. Overall the contributing articles are separated and discussed in three stages – The first part of the thesis i.e., chapter 2 explains three novel method classes of rigid point set registration namely Gravitational Approach (GA), Fast Gravitational Approach (FGA), and RPSRNet. GA was introduced as the first physics-based rigid point set registration. It includes elegant modeling of rigid by dynamics using Newtonian mechanics. The method proposed many new avenues for other types of pattern matching tasks thank point set registration. Next, FGA method, published 4 years after GA presented as an extension that breaks the algorithmic complexity of GA from O(M N ) to O(M log N ) using Barnes-Hut tree representation of point cloud. It also eliminates the requirement of heuristic optimization parameter settings by GA, and achieve state-of-the-art alignment accuracy on LiDAR odometry. Finally, RPSRNet presents deep learning version of FGA, with custom convolution layers for hierarchical point feature embedding. RPSRNet is robust and the fastest among SoA methods for LiDAR data registration. The second part, i.e., chapter 3, of the thesis introduces NRGA as the fist physics-based non-rigid point set registration method which is computationally slow but robust against noisy and partial inputs. NRGA preserves structural consistency as it coherently regularize motion of deformable vertices. For articulated hand shape reconstruction, a tailored version of NRGA -- Articulated-NRGA -- is effective to refine final hand shape. Collision and penetration avoidance between source and target surfaces are tackled by constrained optimization in NRGA. This setting has improved hand and object interaction reconstruction. Next contribution FoldMatch method remodels the shape deformation by introducing wrinkle vector field (WVF) for capturing complex clothing and garment details while fitting body models onto 3D Scans. Quantitative evaluation of FoldMatch and NRGA shows their effectiveness in geometrically consistent surface modeling and reconstruction tasks. Finally, the third part of the thesis explains globally consistent outdoor scene reconstruciton, odometry estimation, and uncertainty guided pose-graph optimization in a novel LiDAR-based localization and map building method, called Deep Evidential LiDAR Odometry (DELO). This is the first Odometry method to use predictive uncertainty modeling for sensor pose prediction network.

Volltext Dateien herunterladen

  • Der Dekan des Fachbereiches Informatik ist Herr Prof. Dr. Christoph Garth und nicht Herr Dr. habil. Bernd Schürmann

Metadaten exportieren

Metadaten
Verfasser*innenangaben:Sk Aziz AliORCiD
URN:urn:nbn:de:hbz:386-kluedo-74290
DOI:https://doi.org/10.26204/KLUEDO/7429
Betreuer*in:Didier Stricker
Dokumentart:Dissertation
Kumulatives Dokument:Nein
Sprache der Veröffentlichung:Englisch
Datum der Veröffentlichung (online):26.09.2023
Jahr der Erstveröffentlichung:2023
Veröffentlichende Institution:Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Titel verleihende Institution:Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Datum der Annahme der Abschlussarbeit:18.04.2023
Datum der Publikation (Server):26.09.2023
Seitenzahl:XXI, 173
Fachbereiche / Organisatorische Einheiten:Kaiserslautern - Fachbereich Informatik
CCS-Klassifikation (Informatik):A. General Literature / A.0 GENERAL
DDC-Sachgruppen:0 Allgemeines, Informatik, Informationswissenschaft / 004 Informatik
Lizenz (Deutsch):Creative Commons 4.0 - Namensnennung (CC BY 4.0)