From Cognition 2 Applications: Bridging the Gap between Formal Education & AI

  • This thesis focuses on novel methods to establish the utility of wearable devices along with machine learning and pattern recognition methods for formal education and address the open research questions posed by existing methods. Firstly, state-of-the-art methods are proposed to analyse the cognitive activities in the learning process, i.e., reading, writing, and their correlation. Furthermore, this thesis presents real-time applications in wearable space as an experimental tool in Physics education, and an air-writing system. There are two critical components in analysing the reading behaviour, i.e., WHERE a person looks at (gaze analysis) and WHAT a person looks at (content analysis). This thesis proposes novel methods to classify the reading content to address the WHAT AT component. The proposed methods are based on a hybrid approach, which fuses the traditional computer vision methods with deep neural networks. These methods, when evaluated on publicly available datasets, yield state-of-the-art results to define the structure of the document images. Moreover, extensive efforts were made to refine and correct ICDAR2017-POD dataset along with a completely new FFD dataset. Traditionally, handwriting research focuses on character and number recognition without looking into the type of writing, i.e. text, math, and drawing. This thesis reports multiple contributions for on-line handwriting classification. First, it presents a public dataset for on-line handwriting classification OnTabWriter, collected using iPen and an iPad. In addition, a new feature set is introduced for on-line handwriting classification to establish the benchmark on the proposed dataset to classify handwriting as plain text, mathematical expression, and plot/graph. An ablation study is made to evaluate the performance of the proposed feature set in comparison to existing feature sets. Lastly, this thesis evaluates the importance of context for on-line handwriting classification. Analysing reading and writing activities individually is not enough to provide insights to identify the student's expertise unless their correlations are analysed. This thesis presents a study where reading data from wearable eye-trackers and writing data from sensor pen are analysed together in correlation to correlate the expertise of the users in Physics education with their actual knowledge. Initial results show a strong correlation between individual's expertise and understanding of the subject. Augmented reality & virtual applications can play a vital role in making classroom environments more interactive and engaging both for teachers and learners. To validate the hypothesis, different applications are developed and evaluated. First, smart glasses are used as an experimental tool in Physics education to help the learners perform experiments by providing assistance and feedback on head mounted display in understanding acoustics concepts. Second, a real-time application of air-writing with the finger on an imaginary canvas using a single IMU as the FAirWrite system is also presented. FAirWrite system is further equipped with DL methods to classify the air-written characters.

Download full text files

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Junaid Younas
URN:urn:nbn:de:hbz:386-kluedo-72529
DOI:https://doi.org/10.26204/KLUEDO/7252
Advisor:Paul Lukowicz
Document Type:Doctoral Thesis
Language of publication:English
Date of Publication (online):2023/04/25
Year of first Publication:2023
Publishing Institution:Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Granting Institution:Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Acceptance Date of the Thesis:2022/12/21
Date of the Publication (Server):2023/04/25
Page Number:XIII, 190
Faculties / Organisational entities:Kaiserslautern - Fachbereich Informatik
DDC-Cassification:0 Allgemeines, Informatik, Informationswissenschaft / 004 Informatik
Licence (German):Creative Commons 4.0 - Namensnennung, nicht kommerziell (CC BY-NC 4.0)