Self-Supervised Anomaly Detection with Neural Transformations

  • From industrial fault detection to medical image analysis or financial fraud prevention: Anomaly detection—the task of identifying data points that show significant deviations from the majority of data—is critical in industrial and technological applications. For efficient and effective anomaly detection, a rich set of semantic features are required to be automatically extracted from the complex data. For example, many recent advances in image anomaly detection are based on self-supervised learning, which learns rich features from a large amount of unlabeled complex image data by exploiting data augmentations. For image data, predefined transformations such as rotations are used to generate varying views of the data. Unfortunately, for data other than images, such as time series, tabular data, graphs, or text, it is unclear what are suitable transformations. This becomes an obstacle to successful self-supervised anomaly detection on other data types. This thesis proposes Neural Transformation Learning, a self-supervised anomaly detection method that is applicable to general data types. In contrast to previous methods relying on hand-crafted transformations, neural transformation learning learns the transformations from data and uses them for detection. The key ingredient is a novel objective that encourages learning diverse transformations while preserving the relevant semantic content of the data. We prove theoretically and empirically that it is more suited than existing objectives for transformation learning. We also introduce the extensions of neural transformation learning for anomaly detection within time series and graph-level anomaly detection. The extensions combine transformation learning and other learning paradigms to incorporate vital prior knowledge about time series and graph data. Moreover, we propose a general training strategy for deep anomaly detection with contaminated data. The idea is to infer the unlabeled anomalies and utilize them for updating parameters alternatively. In setups where expert feedback is available, we present a diverse querying strategy based on the seeding algorithm of K-means++ for active anomaly detection. Our extensive experiments and analysis demonstrate that neural transformation learning achieves remarkable and robust anomaly detection performance on various data types. Finally, we outline specific paths for future research.

Download full text files

Export metadata

Metadaten
Author:Chen Qiu
URN:urn:nbn:de:hbz:386-kluedo-72923
DOI:https://doi.org/10.26204/KLUEDO/7292
Advisor:Marius Kloft
Document Type:Doctoral Thesis
Language of publication:English
Date of Publication (online):2023/05/27
Year of first Publication:2023
Publishing Institution:Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Granting Institution:Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Acceptance Date of the Thesis:2023/04/13
Date of the Publication (Server):2023/06/21
Tag:Anomaly Detection; Deep Learning; Machine Learning; Self-supervised Learning
Page Number:IX, 153
Faculties / Organisational entities:Kaiserslautern - Fachbereich Informatik
CCS-Classification (computer science):I. Computing Methodologies / I.2 ARTIFICIAL INTELLIGENCE / I.2.6 Learning (K.3.2) / Connectionism and neural nets
DDC-Cassification:0 Allgemeines, Informatik, Informationswissenschaft / 004 Informatik
Licence (German):Creative Commons 4.0 - Namensnennung, nicht kommerziell, keine Bearbeitung (CC BY-NC-ND 4.0)