Hyperplane transversals of homothetical, centrally symmetric polytopes
- Let P c R^n, n >= 2, be a centrally symmetric, convex n-polytope with 2r vertices, and P be a family of m >= n + 1 homothetical copies of P. We show that a hyperplane transversal of all members of P (it it exists) can be found in O(rm) time.
| Author: | Horst Martini, Anita Schöbel |
|---|---|
| URN: | urn:nbn:de:hbz:386-kluedo-10743 |
| Series (Serial Number): | Report in Wirtschaftsmathematik (WIMA Report) (47) |
| Document Type: | Preprint |
| Language of publication: | English |
| Year of Completion: | 1999 |
| Year of first Publication: | 1999 |
| Publishing Institution: | Technische Universität Kaiserslautern |
| Date of the Publication (Server): | 2000/08/30 |
| Tag: | Minkowski space; center hyperplane; centrally symmetric polytope; common transversal; hyperplane transversal; polyhedral norm; scaled translates |
| Faculties / Organisational entities: | Kaiserslautern - Fachbereich Mathematik |
| DDC-Cassification: | 5 Naturwissenschaften und Mathematik / 510 Mathematik |
| Licence (German): |
