Heuristics for the K-Cardinality Tree and Subgraph Problems
- In this paper we consider the problem of finding in a given graph a minimal weight subtree of connected subgraph, which has a given number of edges. These NP-hard combinatorial optimization problems have various applications in the oil industry, in facility layout and graph partitioning. We will present different heuristic approaches based on spanning tree and shortest path methods and on an exact algorithm solving the problem in polynomial time if the underlying graph is a tree. Both the edge- and node weighted case are investigated and extensive numerical results on the behaviour of the heuristics compared to optimal solutions are presented. The best heuristic yielded results within an error margin of less than one percent from optimality for most cases. In a large percentage of tests even optimal solutions have been found.
Author: | Matthias Ehrgott, Horst. W. Hamacher, J. Freitag, F. Maffioli |
---|---|
URN: | urn:nbn:de:hbz:386-kluedo-4930 |
Series (Serial Number): | Report in Wirtschaftsmathematik (WIMA Report) (8) |
Document Type: | Preprint |
Language of publication: | English |
Year of Completion: | 1996 |
Year of first Publication: | 1996 |
Publishing Institution: | Technische Universität Kaiserslautern |
Date of the Publication (Server): | 2000/04/03 |
Tag: | K-cardinality trees |
Source: | Asia Pacific Journal of Operational Research, vol 14, no 1, May 1997 |
Faculties / Organisational entities: | Kaiserslautern - Fachbereich Mathematik |
DDC-Cassification: | 5 Naturwissenschaften und Mathematik / 510 Mathematik |
Licence (German): | Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011 |