Intersection Theory on Tropical Toric Varieties and Compactifications of Tropical Parameter Spaces
- We study toric varieties over the tropical semifield. We define tropical cycles inside these toric varieties and extend the stable intersection of tropical cycles in R^n to these toric varieties. In particular, we show that every tropical cycle can be degenerated into a sum of torus-invariant cycles. This allows us to tropicalize algebraic cycles of toric varieties over an algebraically closed field with non-Archimedean valuation. We see that the tropicalization map is a homomorphism on cycles and an isomorphism on cycle classes. Furthermore, we can use projective toric varieties to compactify known tropical varieties and study their combinatorics. We do this for the tropical Grassmannian in the Plücker embedding and compactify the tropical parameter space of rational degree d curves in tropical projective space using Chow quotients of the tropical Grassmannian.
- Schnitt-Theorie auf tropischen torischen Varietäten und Kompaktifizierungen tropischer Parameterräume
Author: | Henning Meyer |
---|---|
URN: | urn:nbn:de:hbz:386-kluedo-26372 |
Advisor: | Andreas Gathmann |
Document Type: | Doctoral Thesis |
Language of publication: | English |
Year of Completion: | 2011 |
Year of first Publication: | 2011 |
Publishing Institution: | Technische Universität Kaiserslautern |
Granting Institution: | Technische Universität Kaiserslautern |
Acceptance Date of the Thesis: | 2011/05/13 |
Date of the Publication (Server): | 2011/05/18 |
Tag: | Chow Quotient; Tropical Grassmannian; Tropical Intersection Theory |
Faculties / Organisational entities: | Kaiserslautern - Fachbereich Mathematik |
DDC-Cassification: | 5 Naturwissenschaften und Mathematik / 510 Mathematik |
MSC-Classification (mathematics): | 14-XX ALGEBRAIC GEOMETRY / 14Txx Tropical geometry [See also 12K10, 14M25, 14N10, 52B20] / 14T99 None of the above, but in this section |
Licence (German): | Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011 |