Generic Methods for Document Layout Analysis and Preprocessing

  • Generic layout analysis--process of decomposing document image into homogeneous regions for a collection of diverse document images--has many important applications in document image analysis and understanding such as preprocessing of degraded warped, camera-captured document images, high performance layout analysis of document images containing complex cursive scripts, and word spotting in historical document images at page level. Many areas in this field like generic text line extraction method are considered as elusive goals so far, still beyond the reach of the state-of-the-art methods [NJ07, LSZT07, KB06]. This thesis addresses this problem in such a way that it presents generic, domain-independent, text line extraction and text and non-text segmentation methods, and then describes some important applications, that were developed based on these methods. An overview of the key contributions of this thesis is as follows. The first part of this thesis presents a generic text line extraction method using a combination of matched filtering and ridge detection techniques, which are commonly used in computer vision. Unlike the state-of-the-art text line extraction methods in the literature, the generic text line extraction method can be equally and robustly applied to a large variety of document image classes including scanned and camera-captured documents, binary and grayscale documents, typed-text and handwritten documents, historical and contemporary documents, and documents containing different scripts. Different standard datasets are selected for performance evaluation that belong to different categories of document images such as the UW-III [GHHP97] dataset of scanned documents, the ICDAR 2007 [GAS07] and the UMD [LZDJ08] datasets of handwritten documents, the DFKI-I [SB07] dataset of camera-captured documents, Arabic/Urdu script documents dataset, and German calligraphic (Fraktur) script historical documents dataset. The generic text line extraction method achieves 86% (n = 23,763 text lines in 650 documents) text line detection accuracy which is better than the aggregate accuracy of 73% of the best performing domain-specific state-of-the-art methods. To the best of the author's knowledge, it is the first general-purpose text line extraction method that can be equally used for a diverse collection of documents. This thesis also presents an active contour (snake) based curled text line extraction method for warped, camera-captured document images. The presented approach is applied to DFKI-I [SB07] dataset of camera-captured, Latin script document images for curled text line extraction. It achieves above 95% (n = 3,091 text lines in 102 documents) text line detection accuracy, which is significantly better than the competing state-of-the-art curled text line extraction methods. The presented text line extraction method can also be applied to document images containing different scripts like Chinese, Devanagari, and Arabic after small modifications. The second part of this thesis presents an improved version of the state-of-the-art multiresolution morphology (Leptonica) based text and non-text segmentation method [Blo91], which is a domain-independent page segmentation approach and can be equally applied to a diverse collection of binarized document images. It is demonstrated that the presented improvements result in an increase in segmentation accuracy from 93% to 99% (n = 113 documents). This thesis also introduces a discriminative learning based approach for page segmentation, where a self-tunable multi-layer perceptron (MLP) classifier [BS10] is trained for distinguishing between text and non-text connected components. Unlike other classification based page segmentation approaches in the literature, the connected components based discriminative learning based approach is faster than pixel based classification methods and does not require a block segmentation method beforehand. A segmentation accuracy of $96\%$ ($n = 113$ documents) is achieved in comparison to the state-of-the-art multiresolution morphology (Leptonica) based page segmentation method [Blo91] that achieves a segmentation accuracy of 93%. In addition to text and non-text segmentation of Latin script documents, the presented approach can also be adapted for document images containing other scripts as well as for other specialized layout analysis tasks such as digit and non-digit segmentation [HBSB12], orientation detection [RBSB09], and body-text and side-note segmentation [BAESB12]. Finally, this thesis presents important applications of the two generic layout analysis techniques, ridge-based text line extraction method and the multi-resolution morphology based text and non-text segmentation method, discussed above. First, a complete preprocessing pipeline is described for removing different types of degradations from grayscale warped, camera-captured document images that includes removal of grayscale degradations such as non-uniform shadows and blurring through binarization, noise cleanup applying page frame detection, and document rectification using monocular dewarping. Each of these preprocessing steps shows significant improvement in comparison to the analyzed state-of-the-art methods in the literature. Second, a high performance layout analysis method is described for complex Arabic script document images written in different languages such as Arabic, Urdu, and Persian and different styles for example Naskh and Nastaliq. The presented layout analysis system is robust against different types of document image degradations and shows better performance for text and non-text segmentation, text line extraction, and reading order determination on a variety of Arabic and Urdu document images as compared to the state-of-the-art methods. It can be used for large scale Arabic and Urdu documents' digitization processes. These applications demonstrate that the layout analysis methods, ridge-based text line extraction and the multi-resolution morphology based text and non-text segmentation, are generic and can be applied easily to a large collection of diverse document images.

Download full text files

Export metadata

Metadaten
Author:Syed Saqib Bukhari
URN:urn:nbn:de:hbz:386-kluedo-33738
Advisor:Thomas Breuel
Document Type:Doctoral Thesis
Language of publication:English
Date of Publication (online):2012/12/12
Year of first Publication:2012
Publishing Institution:Technische Universität Kaiserslautern
Granting Institution:Technische Universität Kaiserslautern
Acceptance Date of the Thesis:2012/06/11
Date of the Publication (Server):2012/12/13
Tag:document analysis; layout analysis; optical character recognition
GND Keyword:Bildverarbeitung; Layout; Optische Zeichenerkennung
Page Number:219
Faculties / Organisational entities:Kaiserslautern - Fachbereich Informatik
CCS-Classification (computer science):I. Computing Methodologies / I.4 IMAGE PROCESSING AND COMPUTER VISION (REVISED)
I. Computing Methodologies / I.7 DOCUMENT AND TEXT PROCESSING (H.4-5) (REVISED) / I.7.5 Document Capture (I.4.1) (NEW)
DDC-Cassification:0 Allgemeines, Informatik, Informationswissenschaft / 004 Informatik
Licence (German):Standard gemäß KLUEDO-Leitlinien vom 10.09.2012