Error estimates for Tikhonov regularization with unbounded regularizing operators

  • It is shown that Tikhonov regularization for ill- posed operator equation \(Kx = y\) using a possibly unbounded regularizing operator \(L\) yields an orderoptimal algorithm with respect to certain stability set when the regularization parameter is chosen according to the Morozov's discrepancy principle. A more realistic error estimate is derived when the operators \(K\) and \(L\) are related to a Hilbert scale in a suitable manner. The result includes known error estimates for ordininary Tikhonov regularization and also the estimates available under the Hilbert scale approach.

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:M. Thamban Nair
URN:urn:nbn:de:hbz:386-kluedo-50565
Series (Serial Number):Preprints (rote Reihe) des Fachbereich Mathematik (279)
Document Type:Report
Language of publication:English
Date of Publication (online):2017/11/09
Year of first Publication:1996
Publishing Institution:Technische Universität Kaiserslautern
Date of the Publication (Server):2017/11/09
Page Number:9
Faculties / Organisational entities:Kaiserslautern - Fachbereich Mathematik
DDC-Cassification:5 Naturwissenschaften und Mathematik / 510 Mathematik
Licence (German):Creative Commons 4.0 - Namensnennung, nicht kommerziell, keine Bearbeitung (CC BY-NC-ND 4.0)