Kontinuierliches Ultraschall-Preformen zur Fertigung von CFK-Bauteilen in der Luftfahrt
- In der vorliegenden Arbeit wird die Entwicklung und Beurteilung einer alternativen
kontinuierlichen Preform-Technologie zur Vorstabilisierung von trockenen Kohlenstofffaserhalbzeugen
unter Verwendung der Ultraschall-Schweiß-Technologie für
Kunststoffe präsentiert. Aktuell verwendete Technologien für Großbauteile in der
Luftfahrt sind in der Regel diskontinuierlich und wenig produktiv. Zudem weisen sie
Probleme hinsichtlich des gewünschten Kompaktierungsgrades und der Oberflächenqualität
auf. Diesen Nachteilen soll durch den Einsatz des kontinuierlichen
Ultraschall-Preformens begegnet werden.
Innerhalb der Ausarbeitung wurde eine neue Funktionseinheit, die für die Anforderungen
in einem kontinuierlichen Preform-Prozess geeignet ist, entwickelt und mit
passender Sensorik und Steuerung in einen Versuchsstand integriert. Durch statische
Versuche konnte das halbzeugabhängige Aufheizverhalten untersucht
werden. Es zeigte sich, dass der Erwärmungsprozess durch Reibung zwischen den
Filamenten bestimmt wird und somit einen homogenen Prozess unterstützt.
Untersuchungen der Parameter führten zu diskreten und materialabhängigen Prozessfenstern
und einem tieferen Verständnis für die Einflüsse des Schweiß-Prozesses
auf das Preform-Verhalten. Durch die Betrachtung von Prozessgrenzen
konnten unerwünschte Strukturdefekte ausgeschlossen und das Potenzial für die
Nutzung verschiedener Materialien sowie für den Einsatz an komplexeren Bauteilen
aufgezeigt werden. Weiterhin wurde durch Permeabilitätsuntersuchungen gezeigt,
dass es einen materialabhängigen Einfluss des Prozesses auf die Infusionierbarkeit
gibt, der sich sowohl als eine Verbesserung als auch eine als Verschlechterung
darstellen kann. Durch vibrationsinduzierte Verdichtungsprozesse konnten höhere
Faservolumengehalte bei einer gesteigerten Produktivität erzielt werden. Auch eine
partielle Verbesserung der mechanischen Eigenschaften ist durch die Anwendung
des Ultraschall-Prefom-Verfahrens möglich. Für die Herstellung komplexerer Strukturen
eignet sich das Verfahren ebenso, wie an einem Demonstrator gezeigt werden
konnte. Geometrische Restriktionen grenzen die Anwendbarkeit allerdings ein.
Durch die Entwicklung der Technologie konnte eine vielversprechende Alternative
dargelegt werden, die Kosten sparen und Bauteileigenschaften verbessern kann.
- Carbon fiber reinforced polymer composites (CFRPC) have aroused increasing interests
for structural and non-structural parts not even in the aerospace industry, because
of their great mechanical properties related to the low specific weight. This
progress can be seen observing the increasing material share of composites used in
the new developed airplanes, like the A350 or the Boeing 787. Due to that fact a
higher level of flexible automation to produce CFRPC-parts is claimed by the industry
to save costs, material and time as well as to achieve a more reproducible quality.
One important step in the process chain using bindered dry-fiber material for manufacturing
of CFRPC-parts with infusion technologies is the preforming process, which
is needed to obtain a certain fiber volume content and to stabilize the dry fiber
preform to a claimed geometry for further processing. Thereby a certain amount of
layers will be joined using the polymer based binders in between. Within the
aerospace industry the so called sequential preforming using bindered material is
preferred towards stitching processes because of a lower disturbance of the fiber
architecture and the possibility to reach a higher densification.
State of the art technologies used in the aerospace industry like convection ovens or
IR-beams in combination with vacuum-bags are discontinuously, not time efficient,
expensive, difficult to automate and the use of a vast amount of auxiliary-material is
necessary. All these disadvantages make clear, that a development of an alternative
process is of current interest. Ultrasonic welding was identified as an alternative cost
efficient technology for joining layers. The challenge is to develop a continuous preforming
process by the means of ultrasonic welding for large and complex parts
following the design of aerospace structures. The idea is that a sonotrode should be
moved relative to a stack of carbon fiber layers with a certain feed velocity. Thereby a
specific weld pressure as well as an amplitude must be applied perpendicular to the
surface to generate the necessary energy activating the binder. To meet this
challenge first there is a need to develop a new function unit within a test rig.
Afterwards it is possible to perform tests to understand the working mechanism as
well as to evaluate the process limits and to define proper parameters to achieve the
claimed material quality. Furthermore there will be an investigation on the influence of the process to the mechanical properties of the final part. Finally it is claimed to
have a look onto the feasibility using this technology for more complex parts.
The new developed function unit bases on a 35 kHz oscillation unit with a special
bearing to avoid problems caused by transverse forces. The core of this unit is the
adaptive adjustment system to ensure a proper alignment of sonotrode and material
surface. Additionally several sensors to monitor the process were implemented. This
unit was integrated into a stiff test rig with a linear feeding axis for material transport.
A proprietary control system was established to realize automated manufacturing
cycles and to record all process data for evaluation.
To ensure the process quality an assurance system by the means of an IR-camera
was integrated. To validate the measurement on the surface investigations on the
temperature development within the laminate were performend. The results have
shown that the heat mechanism mainly bases on inter-filament friction due to the
ultrasonic vibrations. This leads to a homogeneous heat distribution all through the
material and to a characteristic temperature profile on the surface, which can be used
to evaluate the process and to detect fiber miss-alignments.
Investigations to point out the process limits and disturbance values have shown that
the weld pressure as well as the inclination of the sonotrode to the material surface
has a huge influence on the process quality. Therefore it is necessary to adjust the
parameters to avoid unsufficient quality. Observations regarding the maximum numbers
of layers could be joined have illustrated that the damping effect with increasing
material thickness has no significant influence to the process. Therefore parts with a
thickness of more than 20 mm can be realized without issues. Further investigations
confirmed the possibility to use multiple sonotrode arrays to preform large parts with a certain overlapping area without an over-compaction. Not even using arrays a homogeneous
thickness all over the specimens could be observed. Geometrical restrictions
have to be mentioned as an disadvantage using this technology, due to the
fact that an flat contact between sonotrode and material surface must be ensured.
Beside carbon fibers it is also possible to use glass fabrics as well without documented
issues.
Influence and parameter studies have shown that it is possible to identify a certain
process window related to each material to achieve a relative fiber volume Content between 60 % and 65 %. In general a high amplitude (in this case of 23.1 μm) and a
low weld pressure between 0.1 MPa and 0.15 MPa are recommended. The value to
control the process individually was set to the feed velocity. Depending on the material
this value differs between 10 mm/s and 25 mm/s. Static comparisons to conventional
technologies (vaccum or heat press) have shown the potential even for
continuous processing. It is possible to reduce the heat time by more than 2000 %
and to increase the fiber volume content to values of more than 70 %. Due to the
increasing compaction and different binder distribution a permeability study was
performed. Of course, an increasing compaction leads to a pure permeability.
However, because of the short heating time the flow channels in fabrics for example
remain open, which leads to an increasing permeability. Therefore the impregnation
behavior is influenced, but the occurring effect depends on the selected material.
The influence of the ultrasonic compaction process on the mechanical properties
(Tension, ILSS, CAI) was investigated as well by a comparison to conventional manufactured
specimens by the means of vacuum compaction. The infusion was done
by RTM and VAP-Processes. The main proposition is that there is no degradation in
the results for any specimen. Regarding the VAP-Process even partly increasing
values could be observed for the ultrasonic specimens. Depending on the material
the shear strength increases due to a better layer connection as well as the Young’s
Modulus for fabrics. This is because of the decreasing undulations effected by the
higher compaction rate and the better fiber alignment. The results of the CAI-Trials
have shown smaller damage areas and partly increasing compaction strength. This
can lead to improved dimensioning possibilities.
A feasibility study has shown that it is possible to use this technology for more
complex parts as well. Using special formed sonotrodes it is possible to manufacture
also parts with continuous shapes. Beside a qualitatively improvement the feasibility test has presented a huge time saving potential. For the chosen part a lead time
reduction of more than 50 % is possible.
Summarized in the present work a new pre-stabilization process for dry fiber material
could be presented. As well for an increasing productivity and a higher degree of
automation as for improved part properties this technology shows a promising
alternative to conventional technologies.