Entwicklung einer neuartigen Fertigungstechnik zur Herstellung resorbierbarer Microfibrillarer Composites
- Im Rahmen der vorliegenden Arbeit wurde erstmalig die Verarbeitungstechnik zur
Entwicklung und Herstellung von Microfibrillaren Composites (MFCs) im Bereich der
resorbierbaren Polymeren angewandt. Ziel war die Herstellung eines polymeren
MFC-Knochennagel-Implantats aus den zwei biodegradierbaren Werkstoffen
Polylaktid und Polyglykolid, um eine Verbesserung der mechanischen Eigenschaften
gegenüber den Ausgangswerkstoffen zu erzielen. Die biodegradierbaren MFCs
wurden schließlich bzgl. ihres mechanischen Leistungspotentials gegenüber der
alternativen Herstellungstechnik „Solid-State-Extrusion“ bewertet.
Die vier verschiedenen Polylaktide, Poly-L-laktid (PLLA), Polylaktid (PLA), Poly-DLlaktid
(PLDLA), Poly-LDL-laktid (PLDLLA) und der Werkstoff Polyglykolid (PGA)
bildeten vier Werkstoffpaarungen für die MFC-Versuchsreihen. Für die Solid-State-
Extrusion standen die vier Polylaktide aus der MFC-Serie sowie mehrere kompatible
Polylaktidmischungen zur Verfügung.
Innerhalb der Untersuchungen wurde zuerst das Verfahren der Solid-State-Extrusion
optimiert, da es hier auch Überschneidungen in den MFC-Verarbeitungsetappen gab.
Um den MFC-Prozess optimieren zu können, wurden theoretische Überlegungen
und schematische Modellansätze aufgestellt, die dann durch mikroskopische
Beobachtungen bestätigt und verifiziert wurden. Aus der entwickelten
Modellvorstellung konnten Lösungsansätze hergeleitet werden, welche die von
Fakirov et al. aufgestellten MFC-Bedingungen erweiterten und eine Herstellung von
resorbierbaren Microfibrillaren Composites ermöglichten.
Die 3-Punkt-Biegeuntersuchungen der MFC-Werkstoffpaarung zeigten für eine PGA/PLA 30:70-Mischung eine Erhöhung der mechanischen Steifigkeit um 30 % und
der Festigkeit um 20 % gegenüber dem reinen Polylaktid. Die initiale
Leistungssteigerung mittels der Solid-State-Extrusion fällt mit über 120 % Steigerung
deutlich stärker aus als die der MFCs, jedoch reduziert sich der Gewinn unter
Berücksichtigung eines Umformprozesses auf ca. 50 %. Weiterhin konnten die MFCs
mittels dem Spritzgießverfahren in komplexe Geometrien geformt werden.
Abschließend wurde für den MFC-Prozeß ein Verarbeitungsfenster hergeleitet.
This thesis aimed at developing and producing bioresorbable Microfibrillar
Composites (MFCs) for polymer bone nails. The main goal was to create a complete
resorbable Microfibrillar Composite made from the two common commercial
polymers polylactide (PLA) and polyglycolide (PGA). The mechanical strength and
stiffness of this new composite should be significantly higher in comparison to the
native materials. To evaluate their mechanical potential, the produced MFCs were
compared to the alternative technique of solid-state-extrusion.
Four different polymer blends in different component ratios were developed and
investigated for the MFC series. These blends werde made of four different
polylactides, two amorphous and two partially crystalline polylactides, together with
polyglycolide as the reinforcing material. For the solid-state-extrusion, four native
polylactides from the MFC series and several miscible polylactide blends were
produced.
Following the experimental studies, the process of solid-state-extrusion was
optimized first. Furthermore a theoretical model was developed for optimizing the
MFC process. This model was prooved by experimental data and microscopy
investigations. Due to the model it was possible to develop solutions for the MFCprocessing.
In addition the basic rules developed by Fakirov et al. were extended.
The mechanical properties were evaluated by 3 point bending tests. An increase of
30 % for the stiffness and 20 % for the bending strength in comparison to the native
polylactide was reached by a MFC-PGA/PLA 30:70. For the solid-state-extrusion, a
significant increase of 120 % was possible. But considering an additional forming
process, the mechanical properties dropped to 50 % of the initial values.
Furthermore, regarding the MFC-process, it was possible to get complex shapes like
the bone nails by injection molding. In conclusion a processing window was
established for the MFC-process.