Modeling and Analysis of District Heating Networks with Applications in Optimal Control

  • This thesis deals with modeling and simulation of district heating networks (DHN) and the mathematical analysis of the proposed DHN model. We provide a detailed derivation of the complete system of governing equations, starting from a brief exposition of the physical quantities of interest, continued with the components to set up a graph based network model accounting for fluxes and coupling conditions, the transport equations for water and thermal energy in pipelines, and the terms representing consumers and producers. On this basis, we perform an analysis of the solvability of the model equations, starting from the scalar advection problem in a single–consumer single–producer network, to a generalized problem suitable to model simple networks without loops. We also derive an abstract formulation of the problem, which serves as a rigorous mathematical model that can be utilized for optimization problems. The theoretical results can be utilized to perform tran- sient simulations of real world DHN and optimize their performance by optimal control, as indicated in a case study.

Download full text files

Export metadata

Metadaten
Author:Dominik LinnORCiD
URN:urn:nbn:de:hbz:386-kluedo-75228
DOI:https://doi.org/10.26204/KLUEDO/7522
Advisor:René Pinnau, Jan Mohring
Document Type:Doctoral Thesis
Cumulative document:No
Language of publication:English
Date of Publication (online):2023/11/15
Year of first Publication:2023
Publishing Institution:Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Granting Institution:Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Acceptance Date of the Thesis:2022/11/18
Date of the Publication (Server):2023/11/16
Page Number:XII, 115
Faculties / Organisational entities:Kaiserslautern - Fachbereich Mathematik
DDC-Cassification:5 Naturwissenschaften und Mathematik / 510 Mathematik
Licence (German):Creative Commons 4.0 - Namensnennung, nicht kommerziell, keine Bearbeitung (CC BY-NC-ND 4.0)