Explorative and Model-based Visual Analysis of Multivariate Data

  • Researchers and analysts in modern industrial and academic environments are faced with a daunting amount of multivariate data. While there has been significant development in the areas of data mining and knowledge discovery, there is still the need for improved visualizations and generic solutions. The state-of-the-art in visual analytics and exploratory data visualization is to incorporate more profound analysis methods while focusing on improving interactive abilities, in order to support data analysts in gaining new insights through visual exploration and hypothesis building. In the research field of exploratory data visualization, this thesis contributes new approaches in dimension reduction that tackle a number of shortcomings in state-of-the-art methods, such as interpretability and ambiguity. By combining methods from several disciplines, we describe how ambiguity can be countered effectively by visualizing coordinate values within a lower-dimensional embedding, thereby focusing on the display of the structural composition of high-dimensional data and on an intuitive depiction of inherent global relationships. We also describe how properties and alignment of high-dimensional manifolds can be analyzed in different levels of detail by means of a self-embedding hierarchy of local projections, each using full degree of freedom, while keeping the global context. To the application field of air quality research, the thesis provides novel means for the research of aerosol source contributions. Triggered by this particularly challenging application problem, we instigate a new research direction in the area of visual analytics by describing a methodology to model-based visual analysis that (i) allows the scientist to be “in the loop” of computations and (ii) enables him to verify and control the analysis process, in order to steer computations towards physical meaning. Careful reflection of our work in this application has led us to derive key design choices that underlie and transcend beyond application-specific solutions. As a result, we describe a general design methodology to computing parameters of a pre-defined analytical model that map to multivariate data. Core applications areas that can benefit from our approach are within engineering disciplines, such as civil, chemical, electrical, and mechanical engineering, as well as in geology, physics, and biology.

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar
Metadaten
Verfasser*innenangaben:Daniel Engel
URN:urn:nbn:de:hbz:386-kluedo-38414
Betreuer*in:Hans Hagen, Bernd Hamann
Dokumentart:Dissertation
Sprache der Veröffentlichung:Englisch
Datum der Veröffentlichung (online):31.07.2014
Jahr der Erstveröffentlichung:2014
Veröffentlichende Institution:Technische Universität Kaiserslautern
Titel verleihende Institution:Technische Universität Kaiserslautern
Datum der Annahme der Abschlussarbeit:11.07.2014
Datum der Publikation (Server):01.08.2014
Seitenzahl:III, 156
Fachbereiche / Organisatorische Einheiten:Kaiserslautern - Fachbereich Informatik
CCS-Klassifikation (Informatik):I. Computing Methodologies
DDC-Sachgruppen:0 Allgemeines, Informatik, Informationswissenschaft / 004 Informatik
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vom 10.09.2012