Entwicklung nachhaltiger katalytischer Verfahren. Chemische Nutzung nachwachsender Rohstoffe und atomökonomische Synthese von Amiden

  • Nachhaltige Chemie beinhaltet die Nutzung stofflicher Ressourcen und deren Umwandlung ohne Schaden für zukünftige Generationen. Dabei hat sich insbesondere die Katalyse als nützliche Technologie etabliert, durch die Syntheserouten zu hochwertigen Produkten abgekürzt und dabei die CO2-Bilanz des Gesamtprozesses verbessert wird. Im Rahmen dieser Dissertation wurden nachhaltige, homogen-katalytische Prozesse zur Einbindung nachwachsender Rohstoffe in die chemische Wertschöpfungskette und zur abfallminimierten Synthese von Amiden und Peptiden entwickelt. Im ersten Teil dieser Arbeit wurde die isomerisierende Metathese als Methode zur Valorisierung nachwachsender Rohstoffe etabliert. Mit einem bimetallischen Katalysatorsystem, bestehend aus dem Isomerisierungskatalysator [Pd(µ-Br)(tBu3P)]2 und NHC-basierten Ruthenium-Metathesekatalysatoren, werden Doppelbindungen ungesättigter Verbindungen kontinuierlich entlang der Kohlenwasserstoffkette verschoben und können gleichzeitig, ungeachtet ihrer Position, eine Metathese durchlaufen. Dies erlaubt die Umwandlung von zwei unterschiedlichen Olefinen in ein Gemisch mit homogener Produktverteilung und einstellbarer mittlerer Kettenlänge. Das synthetische Potential dieser Transformation wurde anhand der Darstellung von Dieselersatzkraftstoffen demonstriert, die vollständig auf erneuerbaren Ressourcen basieren und aufgrund ihres Siedeverhaltens in modernen Motoren in unverdünnter Form eingesetzt werden können. Der neu entwickelte Tandemprozess ermöglicht weiterhin die gezielte Kürzung olefinischer Seitenketten in Gegenwart von Ethen. Die isomerisierende Ethenolyse der natürlich vorkommenden Allylbenzole Eugenol, Allylanisol, Safrol und Methyleugenol wurde zur Synthese wertvoller Styrole mit komplexen Substitutionsmustern eingesetzt. Die isomerisierende Ethenolyse stellt außerdem die Schlüsseltechnologie zur Valorisierung von Cashew-Nussschalenöl dar. Ausgehend von dem bisher ungenutzten Abfallstoff wurde die Synthese der Tsetsefliegen-Lockstoffe 3-Ethyl- und 3-Propylphenol sowie des Polymervorläufers 3,3’-Hydroxystilben demonstriert. Der zweite Teil dieser Doktorarbeit umfasste die rationale Entwicklung einer abfallminimierten und umweltfreundlichen Methode zur Synthese von Amiden aus Carbonsäuren und Aminen. Dazu wurde ein hocheffektives, luft- und wasserstabiles Ru(IV)-Katalysatorsystem identifiziert, das die Addition von Carbonsäuren an Alkine unter Bildung von Enolestern sowie die weitere Umsetzung dieser Aktivester mit Aminen zu Amiden vermittelt. Ein einstufiges Eintopf-Verfahren zur Synthese von Amiden, bei dem alle Reagenzien zu Beginn der Reaktion zugegeben werden, wurde unter Verwendung von Ethoxyacetylen als Aktivierungsreagenz entwickelt. Hierbei werden die Carbonsäuren in Gegenwart eines Amins intermediär in hochreaktive Ketenacetale überführt, die nach Aminolyse die entsprechenden Amide in sehr guten Ausbeuten liefern. Die Anwendungsbreite dieses milden Reaktionsprotokolls umfasst aliphatische und aromatische Carbonsäuren sowie N- und C terminal geschützten Aminosäuren.

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar
Metadaten
Verfasser*innenangaben:Sabrina Baader
URN:urn:nbn:de:hbz:386-kluedo-43560
Betreuer*in:Lukas J. Gooßen
Dokumentart:Dissertation
Sprache der Veröffentlichung:Deutsch
Datum der Veröffentlichung (online):29.05.2017
Jahr der Erstveröffentlichung:2016
Veröffentlichende Institution:Technische Universität Kaiserslautern
Titel verleihende Institution:Technische Universität Kaiserslautern
Datum der Annahme der Abschlussarbeit:14.10.2015
Datum der Publikation (Server):29.05.2017
Freies Schlagwort / Tag:Amidbindungsknüpfung; Nachwachsende Rohstoffe
Seitenzahl:IX, 252
Fachbereiche / Organisatorische Einheiten:Kaiserslautern - Fachbereich Chemie
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 540 Chemie
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vom 30.07.2015