On singular limits of mean-field equations
- Mean field equations arise as steady state versions of convection-diffusion systems where the convective field is determined as solution of a Poisson equation whose right hand side is affine in the solutions of the convection-diffusion equations. In this paper we consider the repulsive coupling case for a system of 2 convection-diffusion equations. For general diffusivities we prove the existence of a unique solution of the mean field equation by a variational technique. Also we analyse the small-Debye-length limit and prove convergence to either the so-called charge-neutral case or to a double obstacle problem for the limiting potential depending on the data.
Author: | Jean Dolbeault, Peter A. Markowich, Andreas Unterreiter |
---|---|
URN: | urn:nbn:de:hbz:386-kluedo-10050 |
Series (Serial Number): | Berichte der Arbeitsgruppe Technomathematik (AGTM Report) (228) |
Document Type: | Preprint |
Language of publication: | English |
Year of Completion: | 2000 |
Year of first Publication: | 2000 |
Publishing Institution: | Technische Universität Kaiserslautern |
Date of the Publication (Server): | 2000/06/21 |
Faculties / Organisational entities: | Kaiserslautern - Fachbereich Mathematik |
DDC-Cassification: | 5 Naturwissenschaften und Mathematik / 510 Mathematik |
Licence (German): | Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011 |